Math 1A Midterm 1 Review Answers

Complete solutions are shown for all questions except those marked .
The missing work for those questions is strictly numeric or algebraic.
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So, by the Squeeze Theorem, Img x* COS— = 0.
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[5] [a] lim (2x-3) =—7
[b] XLm;_(Zx 3)=-5 and I|m (x —6)=-5,s0 I|m f(x)=-5
[c] XILT-(X —6)=-2 and I|m(4x 6)=2,s0 I|mf(x) DNE
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[6] Since Iing(x—2) exists (equals 0), (X 2) = 2I|m(x 2)
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discontinuities where x> —9=0,ie.at Xx=-3 and X =3

im £ (x) = oo [;_1] lim £ (x)=o0 (5_1j im £ (x) = <o [oij lim (x) =oc

[a] Since f(—1) DNE, there is no such &
[b] lim(3—x)=1and lim(bx-1)=2b-1,s0 Iing f(X) existsonlyif 2b—1=11ie. b=1
x—2" X—>

X—2"~
* |t was not stated that you need to check that f is continuous at X = 2 with this value of b,

but it is strongly recommended, to be sure the answer isn’t that there is no such b
[c] lim (2x+6)=4 and lim (3—x)=4,so Iim1 f (X) exists and Iiml f(x)=4 but f(-1) DNE,
x—>-1* X—>— X—>—

Xx—-1"
so X =—1 is a removable discontinuity

lim(3—x)=1and lim(3x—1) =5, so both one-sided limits exist but are not equal,
X—2~ x—2*

so X =2 is a jump discontinuity

Let f(X)=C0S2X—X>.

Since COS2X (a continuous trigonometric function composed with a polynomial function)
and Xx? (a polynomial function) are both continuous for all X,

so is their difference f (X) = Cc0S2X — X°.

Since f(7r)=1-7°<0<1=f(0),
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by the Intermediate Value Theorem, there is a value C in the interval (0, 7z) suchthat f(c)=cos2c—c* =0, ie. cOS2C =c?.

So the equation COS2X = X* has a solution in the interval [0, 7] .
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Vertical asymptote: X= E
+
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Horizontal asymptotes: Y = E
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[a] f(x)=coszx ,a=-1 [b] f(x)=x*-x,a=-2



[14]1© 1.5 feet per minute
[15]1© y+4=2(x-2)

[6] f'(=2) < f'(4) <0 < f'(2) < f'(-4)

[17] [a] If the refrigerator temperature is 4°C , the food will defrostin 6 hours.
[b] If the refrigerator temperature is 4°C , the food will defrost 1 hour sooner for each 1°C increase in the refrigerator’s
temperature.
[c] No. The defrost time should always decrease if the refrigerator temperature increases. The frozen food will always defrost

faster in a warmer refrigerator.
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[18] & [a] F)=——% L] g'(x)= 2%
2(1-1)2
[19] [a] X = —3 (discontinuous) [b]

X = —2 (vertical tangent line)
X =1, 3 (cusps)

[20]  Sincetheline Xx—2y =6 (ie. y=5X—3)istangentto y = f(x) at x =4,
therefore the point of tangency is (4, 3(4) —3) or (4, -1).
That means f(4)=-1and f'(4)=3.
Since f'(4) exists, therefore f is differentiable at X = 4 (by the definition of “differentiable™).
Since f is differentiable at X =4, therefore f is continuous at X =4 (by the “differentiability implies continuity” theorem).

Since f is continuous at X = 4, therefore IirTJ f (x) = f(4) =—1 (by the definition of “continuous at a point”).
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